\Huge
\textcolor{violet}{杊}| Deutsch | |
| English | |
| Español | |
| 中文 | |
| 日本 | |
| Русский | |
| العربية | |
| 한국어 |
Evolution
X \ / \ 集 \\ Set
\textcolor{violet}{\mathcal{T}} \ / \ \textcolor{violet}{拓} \\ Topology\textcolor{violet}{X} \ / \ \textcolor{violet}{拓间} \\ Topological \ spaceDefinition
Definition…
Origin
Urprung…
Calligraphy
Dialects
Details
Details
Diagram
Phonology
Details
Details
Gallery
Notes
Properties
Details
Details
Details
Functoriality
Examples
Theorems
Pathologies
Applications
Taxonomy
- Set ->
- Collection ->
- Relation ->
\Huge
\textcolor{black}{C} \\| Deutsch | Kollektion |
| English | Collection |
| Español | Colección |
| 中文 | 集合 |
| 日本 | コレクション |
| Русский | Коллекция |
| العربية | مجموعة |
| 한국어 | 컬렉션 |
Evolution
X \ / \ Set
\textcolor{gray}{\mathcal{P}} \ / \ Power \ setDefinition
A collection is a nonempty subset of the power set.
C \subseteq \mathcal{\textcolor{gray}{P}}(X)\qquad C \neq \emptysetThe class of all collections is defined:
\mathbf{Col} := \set{ C :|: C \text{ is a collection to a set } X }Origin
Origin
Calligraphy
Dialects
Details
Details
Details
Diagram
Gallery
Notes
Properties
Details
Details
Details
Functoriality
Examples
Theorems
Pathologies
Applications
Taxonomy
- Set ->
- Collection ->
- Relation ->
\Huge
\textcolor{violet}{Manifold}| Deutsch | |
| English | |
| Español | |
| 中文 | |
| 日本 | |
| Русский | |
| العربية | |
| 한국어 |
Evolution
X \ / \ Set
\textcolor{violet}{\mathcal{T}} \ / \ Topology\textcolor{violet}{X} \ / \ Topological \ spaceDefinition
Definition…
Origin
Origin
Calligraphy
Dialects
Details
Details
Diagram
Gallery
Notes
Properties
Details
Details
Details
Details
Functoriality
Examples
Theorems
Pathologies
Applications
Taxonomy
- Set ->
- Collection ->
- Relation ->
