\Huge 
 \textcolor{violet}{杊}
Deutsch
English
Español
中文
日本
Русский
العربية
한국어

Evolution

X \ / \ 集 \\ Set
\textcolor{violet}{\mathcal{T}} \ / \ \textcolor{violet}{拓} \\ Topology
\textcolor{violet}{X} \ / \ \textcolor{violet}{拓间} \\ Topological \ space

Definition

Origin

Urprung…

Calligraphy

Dialects

Details

Details

Diagram

Phonology

Details

Details

Gallery

Notes

Properties

Details

Details

Details

Functoriality

Examples

As an example…

Example:

Theorems

Considering…

Statment \ 1 \implies Statment \ 2

Pathologies

Applications

Taxonomy

  • Set ->
  • Collection ->
  • Relation ->
\Huge 
\textcolor{gray}{\mathcal{P}}
DeutschPotenzmenge
EnglishPower set
EspañolConjunto potencia
中文幂集
日本ベキ集合
РусскийБулеан / Множество всех подмножеств
العربيةمجموعة القوى
한국어멱집합

Evolution

X \ / \ Set

Definition

\textcolor{gray}{\mathcal{P}}(X) := \set{ S \subseteq X} \qquad \empty, X \in \textcolor{gray}{\mathcal{P}}(X)

Origin

Origin

Calligraphy

Dialects

Set of all subsets

Diagram

Gallery

Notes

Properties

Cardinality

Since the power set is itself a set we can use the cardinality.

Details

Details

Functoriality

Examples

For a set with only two elements the power set can be written explicitly as well:

A = \set{ a , b } \qquad
\textcolor{gray}{\mathcal{P}}(A) =
 \set{ \empty , \{ a\} ,\{ b\} , A}

Theorems

For a finite set the power sets cardinality can be explicitly calulated.

\# X = n \implies \# \textcolor{gray}{\mathcal{P}}(X) = 2^n
Proof

Pathologies

Applications

Taxonomy

  • Set ->
  • Collection ->
  • Relation ->
\Huge 
\textcolor{violet}{Manifold}
Deutsch
English
Español
中文
日本
Русский
العربية
한국어

Evolution

X \ / \ Set
\textcolor{violet}{\mathcal{T}} \ / \ Topology
\textcolor{violet}{X} \ / \  Topological \ space

Definition

Origin

Origin

Calligraphy

Dialects

Details

Details

Diagram

Gallery

Notes

Properties

Details

Details

Details

Details

Functoriality

Examples

As an example…

Example:

Theorems

Considering…

Statment \ 1 \implies Statment \ 2

Pathologies

Applications

Taxonomy

  • Set ->
  • Collection ->
  • Relation ->

Relatives

Sources