\Huge
\textcolor{violet}{杊}| Deutsch | |
| English | |
| Español | |
| 中文 | |
| 日本 | |
| Русский | |
| العربية | |
| 한국어 |
Evolution
X \ / \ 集 \\ Set
\textcolor{violet}{\mathcal{T}} \ / \ \textcolor{violet}{拓} \\ Topology\textcolor{violet}{X} \ / \ \textcolor{violet}{拓间} \\ Topological \ spaceDefinition
Definition…
Origin
Urprung…
Calligraphy
Dialects
Details
Details
Diagram
Phonology
Details
Details
Gallery
Notes
Properties
Details
Details
Details
Functoriality
Examples
Theorems
Pathologies
Applications
Taxonomy
- Set ->
- Collection ->
- Relation ->
\Huge
\textcolor{gray}{\mathcal{P}}| Deutsch | Potenzmenge |
| English | Power set |
| Español | Conjunto potencia |
| 中文 | 幂集 |
| 日本 | ベキ集合 |
| Русский | Булеан / Множество всех подмножеств |
| العربية | مجموعة القوى |
| 한국어 | 멱집합 |
Evolution
X \ / \ Set
Definition
The power set of a set is the set of all subsets.
\textcolor{gray}{\mathcal{P}}(X) := \set{ S \subseteq X} \qquad \empty, X \in \textcolor{gray}{\mathcal{P}}(X)Origin
Origin
Calligraphy
Dialects
Set of all subsets
Diagram
Gallery
Notes
Properties
Cardinality
Since the power set is itself a set we can use the cardinality.
Details
Details
Functoriality
Examples
Theorems
Pathologies
Applications
Taxonomy
- Set ->
- Collection ->
- Relation ->
\Huge
\textcolor{violet}{Manifold}| Deutsch | |
| English | |
| Español | |
| 中文 | |
| 日本 | |
| Русский | |
| العربية | |
| 한국어 |
Evolution
X \ / \ Set
\textcolor{violet}{\mathcal{T}} \ / \ Topology\textcolor{violet}{X} \ / \ Topological \ spaceDefinition
Definition…
Origin
Origin
Calligraphy
Dialects
Details
Details
Diagram
Gallery
Notes
Properties
Details
Details
Details
Details
Functoriality
Examples
Theorems
Pathologies
Applications
Taxonomy
- Set ->
- Collection ->
- Relation ->
